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Experiments have been conducted to investigate turbulent mixing and the dynamics
of outer fluid interfaces, i.e. the interfaces between mixed fluid and pure ambient
fluid. A novel six-foot-diameter octagonal-tank flow facility was developed to enable
the optical imaging of fluid interfaces above the mixing transition, corresponding to
fully developed turbulence. Approximately 10003 whole-field three-dimensional space–
time measurements of the concentration field were recorded using laser-induced-
fluorescence digital-imaging techniques in turbulent jets at a Reynolds number of
Re ∼ 20 000, Schmidt number of Sc ∼ 2000, and downstream distance of ∼ 500 nozzle
diameters. Multiple large-scale regions of spatially nearly uniform-concentration fluid
are evident in instantaneous visualizations, in agreement with previous findings above
the mixing transition. The ensemble-averaged probability density function of con-
centration is found to exhibit linear dependence over a wide range of concentration
thresholds. This can be accounted for in terms of the dynamics of large-scale well-
mixed regions. Visualization of the three-dimensional space–time concentration field
indicates that molecular mixing of entrained pure ambient fluid is dynamically in-
itiated and accomplished in the vicinity of the unsteady large scales. Examination
of the outer interfaces shows that they are dynamically confined primarily near the
instantaneous large-scale boundaries of the flow. This behaviour is quantified in terms
of the probability density of the location of the outer interfaces relative to the flow
centreline and the probability of pure ambient fluid as a function of distance from
the centreline. The current measurements show that the dynamics of outer interfaces
above the mixing transition is significantly different from the behaviour below the
transition, where previous studies have shown that unmixed ambient fluid can extend
across a wide range of transverse locations in the flow interior. The present observa-
tions of dynamical confinement of the outer interfaces to the unsteady large scales,
and considerations of entrainment, suggest that the mechanism responsible for this
behaviour must be the coupling of large-scale flow dynamics with the presence of
small-scale structures internal to the large-scale structures, above the mixing transi-
tion. The dynamics and structure of the outer interfaces across the entire range of
space–time scales are quantified in terms of a distribution of generalized level-crossing
scales. The outer-interface behaviour determines the mixing efficiency of the flow, i.e.
fraction of mixed fluid. The present findings indicate that the large-scale dynamics of
the outer interfaces above the mixing transition provides the dominant contribution
to the mixing efficiency. This suggests a new way to quantify the mixing efficiency of
turbulent flows at high Reynolds numbers.
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1. Introduction
Turbulent fluid interfaces such as concentration, density or vorticity interfaces are

observed to exhibit dynamics across a wide range of scales at high Reynolds numbers
(e.g. Brown & Roshko 1974; Roshko 1976; Liepmann 1979; Dimotakis, Miake-Lye
& Papantoniou 1983; Sreenivasan 1991; Smits & Dussauge 1996; Adrian, Meinhart
& Tomkins 2000). Fundamental and practical aspects of the behaviour of fluid
interfaces, such as their dynamics, structure, and dependence on Reynolds number,
Mach number, Schmidt number, inflow/outflow conditions, flow scale and other
fluid/flow parameters, are subjects of ongoing studies (e.g. Sreenivasan & Meneveau
1986; Pope 1988; Prasad & Sreenivasan 1990; Sreenivasan 1991; Vassilicos & Hunt
1991; Lane-Serff 1993; Yoda, Hesselink & Mungal 1994; Catrakis & Dimotakis 1996a,
1998; Smits & Dussauge 1996; Frederiksen, Dahm & Dowling 1997; Dalziel, Linden &
Youngs 1999; Villermaux & Innocenti 1999). Fluid interfaces correspond to surfaces in
the flow associated with a given fluid or flow property, e.g. isoconcentration surfaces in
turbulent mixing or isodensity surfaces in compressible turbulence. Knowledge of the
dynamics of the interfaces is particularly important for physically based descriptions,
predictions, and control in applications such as mixing (e.g. Catrakis, Aguirre &
Ruiz-Plancarte 2002) and aerooptics (e.g. Dimotakis, Catrakis & Fourguette 2001) at
high Reynolds numbers.

The dynamics of the interfaces across the entire range of scales needs to be under-
stood. The large-scale interfacial behaviour and entrainment, for example, constrain
the total amount of mixing possible for given flow conditions (e.g. Dimotakis 1991).
The large scales are known to be particularly amenable to flow control (e.g. Gad-el-
Hak 2000). The small-scale behaviour is also significant because it can dominate the
total area–volume ratio of the interfaces (e.g. Catrakis et al. 2002). Knowledge of the
dynamics and structure of mixed-fluid interfaces across the entire range of interfacial
scales can be expected to facilitate the development of predictive frameworks of
the mixing efficiency in turbulent flows. The large-scale dynamics of fluid interfaces
in high-Reynolds-number turbulent flows can provide the basis for developing pre-
dictive descriptions useful in various applications. In aero-optics, for example, the
signature of optical beams propagating through turbulent incompressible or com-
pressible flows is intimately related to the behaviour of the turbulent refractive fluid
interfaces. Knowledge of the instantaneous behaviour of such interfaces is essential
for prediction and control of aero-optical interactions (e.g. Jumper & Fitzgerald 2001)
as has been demonstrated, for example, in optical beam propagation through high-
Reynolds-number incompressible turbulent shear layers (Dimotakis et al. 2001). The
outer interfaces, or interfaces between mixed fluid and pure ambient fluid, can provide
the dominant large-scale contributions to the distortion of aero-optical wavefronts.
More generally, the outer interfaces reflect the mechanism by which turbulent mixing
of pure ambient fluid is initiated dynamically in the flow.

In both free-shear and wall-bounded turbulent flows there is evidence of signifi-
cant qualitative changes in mixing, and consequently in the behaviour of the fluid
interfaces, across the mixing transition (e.g. Roshko 1991; Dimotakis 2000; and ref-
erences therein). This transition is physically equivalent to the transition to fully
developed turbulence, with the term mixing transition emphasizing the change in
mixing behaviour observed for flows of miscible fluids. Various experimental observa-
tions and theoretical arguments indicate that the large-scale Reynolds number must
be at a minimum in the range Re ∼ 10 000–20 000. Because the mixing behaviour
can be qualitatively different across the transition, the important consequence is that
measurements or numerical simulations above the mixing transition are essential to
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contribute toward the development of predictive descriptions of the flow behaviour
and mixing dynamics in high-Reynolds-number turbulent flows, which are important
fundamentally as well as practically.

The development of high-resolution flow-imaging techniques has made possible
multi-dimensional measurements of fluid interfaces which are very helpful in ex-
amining the large-scale as well as small-scale properties. Optical imaging enables
non-intrusive flow measurements which can be utilized to examine the interfacial
behaviour above the mixing transition (e.g. Catrakis & Dimotakis 1996a). Two-
dimensional spatial imaging of concentration fields has been conducted to study the
spatial structure of mixed-fluid interfaces as a function of scale (e.g. Sreenivasan
& Meneveau 1986; Lane-Serff 1993; Catrakis & Dimotakis 1996a; Villermaux &
Innocenti 1999). Three-dimensional spatial imaging has been conducted to examine
the instantaneous large-scale structure of concentration fields (Yoda et al. 1994).
Experimental studies of properties of fluid interfaces at small scales, including an
assessment of fractal scaling, have also been conducted (e.g. Prasad & Sreenivasan
1990; Frederiksen et al. 1997; Catrakis et al. 2002).

In the present study, the dynamics of mixing and of the outer fluid interfaces in
fully developed turbulence are examined on the basis of whole-field three-dimensional
space–time concentration measurements above the mixing transition. In § 2, the ex-
perimental procedure and imaging technique are described, including an overview of
the octagonal-tank flow facility. In § 3, results are presented for the whole-field mixing
behaviour on the basis of flow visualizations and the probability density function of
the concentration field. In § 4, the dynamics of the outer interfaces are investigated
on the basis of the three-dimensional space–time measurements and quantified in
terms of the probability density of the location of the outer interfaces relative to the
flow centreline and the probability of pure ambient fluid as a function of distance
from the centreline. The relation between the outer-interface dynamics and the mixing
efficiency of the flow is also examined. In § 5, the behaviour of the interfaces in space
and time throughout the range of scales is quantified in terms of a distribution of
generalized level-crossing scales. Mechanisms that account for the observed interfacial
behaviour are discussed in §§ 3–5. Implications of the present findings for quantifying
the dynamics of outer fluid interfaces and mixing in high-Reynolds-number turbulent
flows in general are also discussed.

2. Experiments
The experiments were conducted in a novel flow facility housed in the Aeronautics

and Fluid Dynamics Laboratories at UC Irvine. A large octagonal tank, shown in
figure 1, was specifically designed and constructed to facilitate the optical imaging of
fluid interfaces in turbulent flows above the mixing transition, by virtue of the size of
the facility. The tank has an internal diameter of 6 ft and an internal height of 9 ft.
It can be filled with 8 tons of filtered, softened, and deionized water prior to each
experiment. Optical access is available through eight 2 ft× 7 ft optical-quality vertical
windows and a 2 ft-diameter horizontal window centred at the bottom face of the
tank. The choice of the octagonal cross-section of the tank, as opposed to a square
cross-section for example, was made for several reasons. First, in studies of flows
such as the round turbulent jet, this provides boundary conditions that are more
appropriate than with a square tank. Secondly, the octagonal cross-section makes
more efficient use of space and helps minimize the amount of water needed. Thirdly,
the octagonal shape results in eight vertical windows as two sets of four orthogonally
oriented windows that make possible laser-sheet propagation and optical imaging
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Figure 1. Side view of the facility designed, constructed and operated for the present experiments
that enabled ∼ 10003 whole-field concentration measurements above the mixing transition. The
octagonal tank provides four pairs of vertical windows at right angles to each other that facilitate
non-intrusive optical imaging of the flow. The tank has an internal diameter of 6 ft, an internal
height of 9 ft, and a capacity of 8 tons of water. A jet seeded with dilute aqueous disodium
fluorescein dye was generated in a blow-down manner and issued through a nozzle of exit diameter
d = 2.54 mm machined flush with the base plate of the plenum, visible at the top. The jet was
directed downwards at a Reynolds number of Re ∼ 20 000 with a Schmidt number of Sc ∼ 2000.
Imaging was conducted in the far field of the flow at a downstream distance of z/d ∼ 500 nozzle
diameters and the large-scale transverse extent of the flow at the imaging location was δ ∼ 0.5 m.

normal to the optical-window surfaces. By virtue of its extensive optical access and
large capacity, this flow facility provides a unique turbulence-visualization and flow-
imaging environment that can be utilized to trade flow velocity for size. This enables
the quantitative study of the behaviour of turbulent flows above the mixing transition
in the controlled environment of the laboratory.
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In the present experiments, the flow facility and imaging diagnostics were configured
to record whole-field three-dimensional space–time measurements of concentration
in the far field of round turbulent jets above the mixing transition. The facility was
operated in a blow-down manner to generate a liquid-phase turbulent jet vertically
downwards issued from a contoured sixth-order-polynomial machined aluminium
nozzle of exit diameter d = 2.54 mm, with the nozzle exit machined flush with the
base plate of the jet plenum. The jet velocity U0 at the nozzle exit was 8 m s−1

and this resulted in a jet Reynolds number of Re ∼ 20 000 based on the nozzle
diameter and the water viscosity ν ∼ 10−6 m2 s−1. The ratio of the internal diameter
of the tank to the diameter of the nozzle was 720. The large size of the facility and
the small nozzle exit diameter resulted in the capability to conduct measurements
at a far-field downstream distance of z/d ∼ 500, above the mixing transition, that
captured the whole-field dynamics of the outer fluid interfaces. The turbulent jet
provides a flow environment where the Reynolds number does not change with
downstream distance, since the growth rate is linear and the mean centreline velocity
is inversely proportional to downstream distance. The reduced flow velocities in the
far field facilitate the imaging of the dynamics of the fluid interfaces by relaxing the
temporal-resolution requirements. Also, the smallest spatial scales in the jet grow with
increasing downstream distance. The capability to record far-field measurements in
this flow, facilitated by the large tank size, therefore relaxes both the temporal and
spatial resolution requirements.

The illumination source was a 6 W continuous-wave argon-ion laser (Coherent
Innova 305) operated in the multiline-visible mode. The laser was operated in power-
regulation mode to ensure stability of the laser-power output in the course of the
experiments. The laser beam was directed through a long-focal-length f = 2 m spheri-
cal bi-convex lens and a short-focal-length f = −6.25 mm cylindrical plano-concave
lens to generate a laser sheet of nominal waist thickness λz ∼ 500 µm. The laser sheet
was directed into the tank with the laser-sheet plane transverse to the jet axis, i.e. in the
similarity plane of the flow, and measurements were acquired in this plane to capture
the dynamics and structure of the interfaces. A 45◦ mirror was positioned below the
tank and was employed to facilitate optical imaging through the 2 ft diameter window
on the bottom face of the tank. The similarity plane for this flow will be denoted
the (x, y)-plane, cf. the schematic in figure 2, with the z-axis taken as the jet axis, i.e.
flow centreline. The origin of the (x, y)-plane is taken to be the intersection of the
jet axis and the imaging plane. Investigating the behaviour of fluid interfaces in the
similarity plane and in the far field of the flow has two important advantages. First,
imaging at a constant downstream distance in the far field of the flow removes the
streamwise dependence of the large scales of the flow. Secondly, the behaviour of the
fluid interfaces in the similarity plane can be scaled in a simple manner using the jet
linear growth-rate law to describe the behaviour at other far-field flow locations.

The jet was seeded with aqueous disodium fluorescein with Schmidt number
Sc ∼ 2000. The dye concentration was c0 ∼ 7× 10−6 M for a sufficient fluorescence
signal at the downstream measurement location with negligible laser beam attenua-
tion. The experiments were conducted in a temperature-controlled room in order to
eliminate bouyancy effects. The plenum water temperature was measured to match
the water temperature in the tank. Based on the precision of the water temperature
measurements, it was estimated that the bouyancy length scale was at least four times
the downstream measurement distance, thus resulting in a purely momentum-driven
jet. All light sources in the laboratory, other than the laser, were turned off or covered
to minimize noise. A sheet of neoprene, attached to the rear windows inside the tank,
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Figure 2. Schematic (not to scale) of the flow-imaging orientation employed in the present experi-
ments, cf. figure 1. A laser sheet was propagated horizontally into the octagonal tank through one
of the eight side windows to illuminate the far field of the flow. A 2 ft-diameter window centred at
the bottom face of the tank and a 45◦ mirror positioned below the tank enabled imaging of the
fluorescence-field intensity using a high-resolution digital camera operated continously in time to
record data sets each of ∼ 10003 three-dimensional space–time x, y, t concentration measurements.
The x, y, t image-volume reconstruction was performed by stacking sequential two-dimensional
spatial realizations of the concentration field in time, as indicated.

reduced reflections of the incident laser sheet. Before each run was conducted, the
laser was turned on and maintained at full laser power for one hour to allow for
power stability. Two hours prior to each run, a recirculating pump with a microfilter
was employed to reduce the gas content in the water and minimize any scattering in
the imaging due to gas bubbles. The tank water was left undisturbed for one hour
before conducting each run.

At the imaging station, the large scale of the jet was δ ∼ 0.5 m and the mean velocity
at the centreline was Ucl ∼ 10 cm s−1. The jet large scale at the imaging station was less
than a third of the internal diameter of the tank and the downstream distance from
the nozzle to the imaging location was less than half the tank height. This resulted
in negligible endwall and sidewall effects during the duration of each experiment.
The ratio of the largest to the smallest concentration-field spatial or temporal scales
was estimated to be 1000 : 1 on the jet centreline on the basis of Kolmogorov and
Batchelor scaling, with the smallest scale here taken as the scale needed to resolve the
knee of the energy spectrum roll-off as in previous studies (e.g. Catrakis & Dimotakis
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1996a). The smallest spatial and temporal scales were estimated to be λc ∼ 500 µm
and τc ∼ λc/Ucl ∼ 5 ms on the jet centreline and were larger away from the centreline
where the focus of this study is. The dye fluorescence was collected with a 35 mm f/1.4
Nikon lens and recorded using a digital-imaging system based on a 1008× 1018-pixel
10-bit CCD sensor (Kodak KAI-1010M) at a framing rate of 30 frames/s and an
individual-image electronic-shutter exposure time of 20 ms. A total of 972 temporally
sequential images were recorded per run, resulting in individual image-data volumes
of 972× 1008× 1018 ∼ 10003 measurements each, or approximately 2 GB each, as
two bytes per pixel were employed to store each 10-bit data value to memory in
real time. The framing rate was selected to match the mean velocity of the outer
interfaces. Each resulting ∼ 10003 space–time data set corresponds to the passage of
approximately three large structures, estimated in terms of the large-structure passage
time τδ = δ/Uc ∼ 10 s and the large-structure velocity Uc = Ucl − 0.5∆U ∼ 5 cm s−1,
where ∆U is the shear which is ∆U = Ucl for the jet. In the outer and neighbouring
internal regions of the flow at least, these measurements satisfy the Nyquist criterion in
three space–time dimensions. Four runs were conducted at the same flow conditions,
resulting in a total of ∼ 4× 109 individual measurements, and were found to be
adequate to evaluate statistics of the whole-field behaviour of the concentration field
and fluid interfaces, such as the probability density function of concentration in § 3,
the dynamics of the outer interfaces in § 4, and the distribution of interfacial scales
in § 5.

The three-dimensional space–time data sets were processed to calibrate and nor-
malize pixel-by-pixel each individual two-dimensional spatial fluorescence-intensity
image for noise, sensitivity and laser illumination variations in the field of view.
This was achieved by recording a set of ten background-noise images, prior to each
run, and a set of ten uniform-concentration images, after each run. Both the pre-
run background-noise images and the post-run uniform-concentration images were
recorded physically in the same imaging plane in the tank as the flow images so that
the optical path was identical for all three types of image. The background-noise
images were recorded by directing the laser sheet into the tank in the same manner
as for the jet imaging, but with pure water without dye in the tank. To generate the
uniform-concentration field needed for the calibration and normalization images, all
the water and dye in the tank were recirculated continuously after each run and the
fluorescence at the imaging plane was monitored for a sufficiently long time, which
was one hour for each of the present experiments, until intensity non-uniformities
were no longer measurable. The resulting signal-to-noise ratio of the calibrated and
normalized three-dimensional x, y, t image-volume measurements, estimated on the
basis of concentration-field power spectra, was found to be comparable to the 300 : 1
signal-to-noise ratio of the two-dimensional spatial concentration-field images in
Catrakis & Dimotakis (1996a). Care was taken to ensure that a known volume of
water was employed each time to fill the tank and a known amount of dye was
discharged into the tank during each run. This is important because it enabled the
use of the post-run uniform-concentration images as reference images to measure the
illumination and optical-collection efficiency field in the field of view as well as to
provide absolute concentration measurements.

3. Whole-field mixing behaviour
The present three-dimensional space–time x, y, t measurements permit an exam-

ination of the whole-field mixing behaviour. Figures 3(a) and 3(b) depict examples
of concentration-field visualizations. In figure 3(a), the visualization is normal to the
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time axis with time increasing vertically. A view along the time axis is depicted in
figure 3(b). A transparent-visualization image-processing technique was employed to
render features of the concentration field visible throughout the ∼ 10003 data set
shown in figure 3(a, b). In this way, the mixing behaviour corresponding to both early
times and later times is visible in figure 3(b). Analogously, the flow dynamics over
the entire range of transverse locations relative to the flow centreline is visible in
figure 3(a). Large-scale dynamics of the concentration field are evident primarily in
the interior of the flow. The spatial extent shown spans the largest transverse scale of
the jet which, as noted in § 2, is physically δ ∼ 0.5 m. The dynamics corresponds to a
continuous time period equivalent to the passage of approximately three large-scale
structures, as discussed in § 2. In figure 3(a), the upper space–time regions correspond
to upstream flow dynamics and the lower space–time regions correspond to down-
stream flow dynamics, since time increases from bottom to top in that visualization
as noted above. Both figures 3(a) and 3(b) indicate that the mixed-fluid interfaces, or
surfaces of constant concentration, are convoluted across the entire range of concen-
tration values, at least on the basis of these whole-field visualizations. The present
three-dimensional space–time measurements enable an examination of both the tem-
poral dynamics and spatial structure of mixing and of the mixed-fluid interfaces.
In this section, the mixing behaviour will be examined in terms of visualizations of
the space–time dynamics of the concentration field and of its spatial structure. The
whole-field mixing behaviour will be quantified in terms of the probability density of
concentration corresponding to the x, y, t measurements.

A two-dimensional space–time x, t visualization of the concentration field in the
vicinity of the flow centreline, derived from the present three-dimensional space–time
x, y, t measurements, is shown in figure 4(a). The colours shown were chosen to aid the
eye in visualizing the large-scale and small-scale extent of mixing, i.e. homogenization
of the concentration field, as well as the dynamics of the fluid interfaces. Figure 4(a)
suggests that pure ambient fluid, denoted by black in this visualization, is rarely
found in the interior of the flow. Visual observation of the dynamics of the outer
interface in figure 4(a), i.e. the interface between pure ambient fluid (black) and
low-concentration fluid (blue), indicates that this interface is dynamically confined
primarily near the instantaneous unsteady large-scale boundaries of the flow. The
measurements in figure 4(a) also indicate that the low-concentration fluid (blue)
is confined largely away from the flow centreline. These observations suggest that
the dominant behaviour in the whole-field mixing dynamics, as far as mixing of
pure ambient fluid is concerned, is that the ambient fluid is dynamically mixed in
the vicinity of the instantaneous large scales of the flow: mixing of ambient fluid
is initiated primarily in the unsteady outer regions of the flow. Numerous other
two-dimensional space–time slices were derived from the present three-dimensional
space–time data, in planes at random orientations in the vicinity of the flow centreline,
and similar behaviour was observed regarding the mixing of pure ambient fluid.

An example of a two-dimensional spatial x, y image of the concentration field
normal to the flow centreline, extracted from the three-dimensional space–time
concentration-field data, is depicted in figure 4(b). This visualization also indicates
that pure ambient fluid (black) is rarely present in the interior of the flow. Low-
concentration fluid (blue) is observed to be spatially located mostly in the outer
region of the flow. The spatial concentration field, in figure 4(b), indicates again
that the interface between pure ambient fluid (black) and low-concentration fluid
(blue) is dynamically confined primarily near the instantaneous large scales. This be-
haviour was confirmed in numerous other spatial x, y images derived from the present



Large-scale dynamics and the behaviour of outer fluid interfaces 389

(a)

(b)

Figure 3. Transparent visualizations of the whole-field ∼ 10003 three-dimensional space–time x, y,
t measurements, cf. figure 2. Blue colours label the concentration field with darker shades denoting
higher concentration. White corresponds to pure ambient fluid. (a) View normal to the time axis
with time increasing vertically; (b) view along the time axis.
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(a)
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Figure 4 (a). For caption see facing page.

measurements and supports the above observation, i.e. that molecular mixing of en-
trained pure ambient fluid is initiated and accomplished mostly in the instantaneous
outer-scale regions of the flow.

The present observations indicate that the dynamics of mixing, above the mixing
transition, is significantly different when compared to the known behaviour below the
transition, cf. discussion in § 1. Various studies conducted in the past have shown that,
below the transition, pure ambient fluid is able to penetrate, and remain unmixed,
deep into the interior of the flow, often crossing the flow centreline (e.g. Dimotakis
et al. 1983; Dahm & Dimotakis 1990; Catrakis & Dimotakis 1996a , figure 3). Above
the transition, the present data indicate that the behaviour of the concentration
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Figure 4. (a) An example of a two-dimensional space–time x, t concentration-field image, in
the vicinity of the flow centreline, derived from the present three-dimensional space–time x, y, t
measurements, cf. figure 3(a). Time increases vertically. Flow dynamics upstream and downstream
correspond to the upper and lower regions respectively. This visualization depicts the dynamics
and structure of the concentration field as well as of the mixed-fluid interfaces. The colours
label concentration values and were applied to aid the eye in visualizing the global as well as
local extent of mixing and the behaviour of the fluid interfaces. Pure ambient fluid is denoted
by black. Low-concentration mixed fluid is denoted by blue. These measurements indicate that
pure ambient fluid (black) is rarely present in the interior of the flow. The outer interface, i.e.
the blue/black interface between mixed fluid and pure ambient fluid, appears to be dynamically
confined primarily near the instantaneous large-scale boundaries of the flow, suggesting that mixing
of pure ambient fluid is initiated predominantly in those regions. Numerous other two-dimensional
space–time images near the flow centreline and at random orientations were visualized from the
x, y, t data and were found to exhibit similar behaviour. (b) An example of a two-dimensional
spatial x, y concentration-field image derived from the present three-dimensional space–time x, y,
t measurements, cf. figure 3(b). This visualization is a view normal to the flow centreline and the
colours label the concentration values. Pure ambient fluid (black) is rarely found in the interior
of the flow, again indicating that mixing is initiated near the large scales of the flow. Large-scale
regions of well-mixed fluid are evident.
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field is markedly different. Mixing of pure ambient fluid is accomplished primarily
prior to penetrating the interior of the flow, cf. figures 4(a) and 4(b). It may be
noted, in the context of two-dimensional spatial or space–time concentration-field
images alone, that a single two-dimensional image below the transition showing pure
ambient fluid remaining unmixed deep in the interior of the flow is sufficient to
conclude that pure ambient fluid can become mixed deep in the flow interior below
the transition. In contrast, above the transition, two-dimensional spatial data (e.g.
Catrakis & Dimotakis 1996a), or point measurements on the flow centreline (e.g.
Dahm & Dimotakis 1990), or two-dimensional space–time data, cannot be expected
to be sufficient to conclude whether or not mixing is dynamically initiated in the
vicinity of the large scales. Whole-field three-dimensional space–time concentration
measurements, as in this study, are crucial above the transition to examine directly
the large-scale dynamics of the outer interfaces and to identify the mechanism by
which molecular mixing of pure ambient fluid is initiated and its relation to the
instantaneous large scales of the flow.

In the context of the mixing efficiency of the flow, i.e. the fraction of mixed fluid,
the present observations are consistent with enhanced mixing across the transition:
since the flow interior is occupied primarily by mixed fluid above the transition, as
shown in figure 4(a, b), a larger mixing efficiency can be expected when compared
to the behaviour below the transition for which a larger fraction of unmixed fluid
is observed in the flow interior (cf. Catrakis & Dimotakis 1996a , figure 3). The
present findings indicate that this mixing enhancement is associated with the flow
dynamically initiating mixing of pure ambient fluid in the vicinity of the unsteady
large-scale boundaries. In this way, ambient fluid penetrates the interior of the flow
primarily as mixed fluid. This behaviour will be interpreted further by examining the
dynamics of the outer interfaces in § 4.

The concentration-field probability density function, p(c), can be examined and
interpreted in terms of the behaviour of the mixed-fluid interfaces. Specifically, the
probability density of concentration can be expressed in terms of the volume fraction
of fluid internal to the interfaces,

p(c) ≡ 1

Vδ

∣∣∣∣dV (c)

dc

∣∣∣∣ , with

∫ c0

0

p(c) dc = 1, (3.1)

where V (c) is the volume contained inside the c-threshold fluid interfaces, for
c1 6 c 6 c0, and corresponds to fluid with concentration values larger than or equal
to c, cf. figure 4(a, b). The normalizing volume Vδ corresponds to the maximum
large-scale boundaries of the flow. The individual probability density function, or
distribution, was computed first for each three-dimensional space–time concentration
data set, and then the ensemble average of these distributions was computed to deter-
mine p(c), shown in figure 5(a). The measurements indicate that the concentration-field
probability density exhibits linear behaviour over a wide range of thresholds in the
interior of the flow. This finding is important because it provides a means to predict
mixing at high Reynolds numbers above the mixing transition. It can be interpreted
in terms of the dynamics of large-scale well-mixed regions in the flow as will be
examined below.

The c = c1 threshold, as indicated in figure 5(a), is in the vicinity of the local
minimum of the concentration-field probability density function and corresponds to
the outer interfaces. It will be utilized in § 4 to study the dynamics of these interfaces.
Examination of the mixed-fluid interfaces as a function of concentration threshold,
in the present data, showed that the c1 threshold is above the noise level. The c = c1



Large-scale dynamics and the behaviour of outer fluid interfaces 393

0.20

0 1 2 3 4 5 6 7 8

(a)

p 
(c

/c
1)

0 1 2 3 4 5 6 7 8

(b)

c/c1

0.15

0.10

0.05

0.20

p s
in

gl
e 

(c
/c

1)

0.15

0.10

0.05

Figure 5. (a) Ensemble-averaged probability density function p(c/c1) of the concentration field
for the three-dimensional space–time measurements, cf. figures 3 and 4. A linear fit for a range
of concentration thresholds in the flow interior is also indicated (dotted line). (b) Concentration
distribution psingle(c/c1) for an individual two-dimensional spatial image (figure 4b).

threshold also corresponds to the outer-interface concentration threshold employed
in a study of two-dimensional spatial measurements at comparable flow conditions
(Catrakis & Dimotakis 1996a , figure 8). Examination of the interfacial behaviour at
higher concentration thresholds, corresponding to the interior of the flow, will be left
for a future study.

Before exploring the connection between the concentration probability density
function and the large-scale dynamics, it is interesting to consider again the interfacial
interpretation of the probability density function from equation (3.1), in the light of
the fact that, over a large range of concentration thresholds in the interior of the
flow, this function appears to be linear for the present flow conditions. This linear
behaviour, i.e.

p

(
c

cmax

)
= α

(
1− c

cmax

)
or p

(
c

c1

)
= β − γ c

c1

, (3.2)

is observed in the interior of the flow for mixed fluid over a wide range of concentration
values, c1 . c . cmax, where cmax/c1 ∼ 7 denotes the maximum concentration indi-
cated for this linear dependence, with p(c) dc ≡ p(c/cmax) d(c/cmax) ≡ p(c/c1) d(c/c1).
Realizing that the ensemble-averaged space–time interfaces for the present flow will
be axisymmetric with respect to the flow centreline, the average location of the c-fluid
interfaces may be written in terms of the radial distance r from the flow centreline
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as c = c(r), with its inverse relation r = r(c). The probability density function can
then be written using equation (3.1) in terms of the ensemble-averaged interfacial
behaviour as

p(c) =
1

Vδ

∣∣∣∣ d

dc

[
πr2(c)

δ2
Vδ

]∣∣∣∣ , (3.3)

for c1 6 c 6 c0, where the outer scale of the flow is denoted by δ as noted above. The
observed linear concentration dependence of p(c), expressed in equation (3.2), and
relation (3.3) imply a linear concentration dependence for the radial location of the
ensemble-averaged interfaces, i.e.

2r(c)

δ
= 1− c

cmax

or
c(r)

cmax

= 1− 2r

δ
, (3.4)

over the range of internal thresholds. Combining equations (3.2)–(3.4), the dimension-
less parameters α, β and γ in the linear dependence of the concentration probability
density become

α =
π

2
, β = α

c1

cmax

, γ = α

(
c1

cmax

)2

. (3.5)

It can be noted that the behaviour of the ensemble-averaged interfaces above the
mixing transition, in the interior of this flow, corresponds to an average concentration
field with uniform radial gradient of concentration.

The present linear behaviour is found in the ensemble-averaged probability density
function of the concentration field, as shown in figure 5(a). Note that this is dis-
tinct from the probability density function corresponding to the ensemble-averaged
concentration field. The latter statistic corresponds simply to the well-known mean-
concentration profile. The difference is that the linear dependence in figure 5(a)
refers to the interfacial behaviour corresponding to the ensemble average of the
probability density function computed over the instantaneous concentration fields.
Averaging after the probability density function is computed for each realization
retains and reveals more information on the behaviour of the interfaces, such as the
uniform concentration-field radial gradient found here for the average internal-mixing
behaviour of the flow.

Figure 5(b) shows the concentration distribution psingle(c/c1) for an individual two-
dimensional spatial field, cf. figure 4(b). This demonstrates that the concentration-field
behaviour for the instantaneous spatial-field images can be quite different from the
ensemble-average result, cf. figure 5(a). In particular, figures 5(b) and 4(b) indicate the
presence of multiple large-scale well-mixed regions in the flow, i.e. regions of nearly
uniform-concentration fluid. This is a manifestation of large-structure dynamics akin
to the well-known shear-layer mixing behaviour (e.g. Brown & Roshko 1974). The
large-scale well-mixed regions provide a further indication that the present mixing
observations correspond to behaviour above the mixing transition.

The observed linear scalar-threshold dependence in the ensemble-averaged prob-
ability density function of concentration, cf. figure 5(a), further indicates that the
present mixing behaviour is above the mixing transition. What is the mechanism
that generates the linear behaviour in the ensemble-averaged probability density of
concentration, in equation (3.2), or equivalently in the average interfacial behaviour
in equation (3.4)? What is the role of large-scale well-mixed spatial regions in the
flow, such as the regions evident in figures 4(a, b) and 5(b)?

Consider the turbulent mixing process as it evolves, in the context of the in-
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stantaneous distribution of the concentration field, cf. figure 5(b). Mixing converts
higher-concentration fluid, originally issued from the jet nozzle in this case, to lower-
concentration fluid, i.e. from right to left along the c-axis in figure 5(b). The large-scale
dynamics in the jet can be axisymmetric or non-axisymmetric, e.g. helical (see, for
example, Dimotakis et al. 1983; Yoda et al. 1994). Here an axisymmetric model is
considered which can be extended to the other cases. Assuming that a large-scale
well-mixed structure propagates downstream through a given similarity plane, the
large-scale spatial extent L(t) of the nearly uniform region of concentration in the
similarity plane, associated with the large structure, can be expected to have a velocity
UL(t) expressed as

UL(t) ≡ dL(t)

dt
∼ δ

L(t)
Uc, (3.6)

where Uc is the large-structure velocity, realizing that the downstream part of the
well-mixed region is on the centreline in this model and the velocity on the centreline
scales inversely with downstream distance for this flow. Equation (3.5) implies that
the transverse extent L(t) of the well-mixed region in the similarity plane scales as

L(t) ∼ (δUct)
1/2. (3.7)

Time here is understood to be relative to the moment each large structure first meets
the similarity plane, and 0 < t 6 τδ = δ/Uc. Each well-mixed large-structure region
will contribute a local peak in the probability density. In the p(c) vs. c coordinates
(figure 5b), each such peak propagates toward higher probability densities and lower
concentration thresholds. The contribution, pL(c, t), of each well-mixed region to the
concentration-field probability density can be expressed from geometrical considera-
tions using the interfacial interpretation of the probability density, cf. equation (3.1),
as

pL(c, t) ∼ δD(c− cL)
L2(t)

δ2
∼ δD(c− cL)

Uc

δ
t, (3.8)

where cL denotes the concentration value corresponding to the nearly uniform well-
mixed region and δD denotes the Dirac delta function. This result can be expected
to hold also for multiple, i.e. nested, well-mixed regions, cf. figures 4(b) and 5(b).
The contribution of each well-mixed region to the similarity-plane concentration
probability density function may be expected therefore to increase linearly with
time. As each large-structure propagates, the nearly uniform concentration value it
generates can be considered in this model as decaying in time linearly, i.e.

cL(t)

cmax

∼ 1− Uc

δ
t, (3.9)

as indicated by the ramp-like concentration signals found in previous studies (e.g.
Antonia et al. 1979; Sreenivasan, Antonia & Britz 1979). The linear temporal depen-
dence in the large-structure contribution pL(c, t), in equation (3.8), and the linear
temporal decay of concentration cL(t) in the large structure, imply the linear concen-
tration dependence of the probability density observed here, cf. equation (3.2) and
figure 5(a). This description also suggests that the departure from linearity in the
concentration probability density in figure 5(a), at the low thresholds, arises from the
dynamics of the finite number of nested large-scale structures. The above arguments
indicate that the dynamics of the large-scale well-mixed regions in this flow can
account for the linear p(c) behaviour observed over a wide range of intermediate
thresholds.
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4. Dynamics of outer fluid interfaces
As discussed in § 1, of particular interest is the behaviour of the outer interface, i.e.

the interface between mixed fluid and pure ambient fluid. From the three-dimensional
space–time concentration-field data, isosurfaces of concentration were identified at
the c = c1 threshold which is in the vicinity of the local minimum in the concentration
probability density, as described in § 3, cf. figure 5(a). An example of a two-dimensional
space–time x, t outer interface is depicted in figure 6(a) superimposed on a grey-level
visualization of the corresponding concentration field, cf. figure 4(a). Although the
interface exhibits features over many scales, it has a greatly reduced extent of large-
scale convolutions relative to the behaviour below the mixing transition, cf. figure 3 in
Catrakis & Dimotakis (1996a). The absence of pronounced large-scale convolutions,
evident in figure 6(a), was confirmed in numerous other two-dimensional space–time
slices in the vicinity of the flow centreline and with otherwise random orientation.
Similar behaviour was observed for the two-dimensional spatial x, y outer interfaces,
an example of which is shown in figure 6(b). The present measurements show that the
outer interfaces are dynamically confined primarily in the vicinity of the instantaneous
large-scale boundaries of the flow. The visualizations in figure 6(a, b) support the
conclusion from § 3, i.e. that mixing of pure fluid is initiated primarily in the vicinity
of the unsteady large scales of the flow.

The present measurements enable a direct examination of the whole-field behaviour
of the three-dimensional space–time outer interfaces. A transparent visualization of
a three-dimensional outer interface is shown in figure 7. This visualization contains
the flow centreline and was created from one of the present ∼ 10003 data sets.
Two-dimensional space–time slices of the outer interface, spanning the entire range
of azimuthal orientations and containing the flow centreline, were identified and
superimposed to produce the visualization shown in figure 7. Darker regions denote
higher values of the probability density of the radial location of the interface, i.e. the
distance from the flow centreline. Consistent with the observations in § 3, the dark
regions in figure 7 are confined to a relatively narrow range of radial locations. The
most striking feature is the large-scale gap spanning a wide range of radial locations
in the interior of the flow, where the outer interface is seen to be absent throughout
its temporal evolution. The features evident in the space–time visualization in figure 7
can also be interpreted as interfacial velocities. Near-vertical interfacial elements, in
figure 7, correspond to low transverse velocities. Features inclined relative to the flow-
centreline direction indicate higher transverse velocities. The interfacial features at
locations of smaller radius exhibit a larger extent of transverse velocity fluctuations,
reflecting the propagation of vortical structures through the interior region bounded
by the outer interfaces.

A visualization of the whole-field dynamics of the outer interface viewed along the
time axis is shown in figure 8. The outer interface identified from each of ∼ 1000
temporally sequential spatial images was superimposed to create this visualization.
Darker regions again denote higher values of the probability density of the radial
location of the outer interface, cf. figure 7. Because this is a view in the time direction,
darker regions also include the interfacial features with reduced transverse velocity
fluctuations, i.e. at locations of larger radius. These are similar to the interfacial
features that are seen as relatively light regions in the view normal to the time axis
in figure 7. The visualization in figure 8 shows that there is a region of relatively
large-scale transverse extent in the interior of the flow which is not visited by the
outer interface. Similar behaviour was found in visualizations of all the current data
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(a)

(b)

Figure 6. Outer interfaces derived from the three-dimensional space–time measurements and
superimposed on the concentration field: (a) space–time x, t interface; (b) spatial x, y interface.
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Figure 7. Whole-field transparent visualization of one of the ∼ 10003 three-dimensional space–time
outer interfaces viewed normal to the time axis and containing the flow centreline. Time increases
vertically, cf. figures 3(a), 4(a) and 6(a). Darker regions indicate radial locations of higher probability
density. The large-scale gap near the centre of the visualization shows the absence of the outer
interface from a wide range of radial locations in the interior of the flow.

at the same flow conditions. This provides further support for the above observations
that the dynamics of the flow result in outer interfaces that remain confined primarily
near the instantaneous large scales.

What is the flow mechanism that results in the observed qualitatively different
behaviour of the outer interfaces above the mixing transition? Entrainment of pure
ambient fluid is known to be primarily accomplished by the large structures, both
below and above the transition (e.g. Brown & Roshko 1974). The initiation of
the entrainment process is not expected to change across the transition since, for
example, the jet far-field growth rate is largely insensitive to the transition. The
behaviour observed here that entrainment as well as mixing are initiated at the large
scales must mean that this is due primarily to large-scale dynamics coupled with the
emergence of small-scale structures inside large structures, generated as a result of
internal instabilities, above the transition. As the large-scale structures entrain pure



Large-scale dynamics and the behaviour of outer fluid interfaces 399

Figure 8. Visualization of the whole-field dynamics of a three-dimensional space–time outer
interface derived from the present ∼ 10003 measurements. This transparent view is along the time
axis. Darker regions correspond to higher values of the probability density of radial location, i.e.
distance from the flow centreline. A large-scale region in the interior of the flow, which is not visited
by the outer interface, is again evident, cf. figure 7.

ambient fluid, the small-scale structures that are internal to the large structures, above
the transition, initiate mixing of pure ambient fluid near the instantaneous large-scale
boundaries of the flow. This results in outer interfaces dynamically confined primarily
near the unsteady large scales, consistent with the observations in this work (figures 4a,
6a, 7 and 8).

As alluded to in § 1 and § 2, the dynamics of the outer interfaces can be expected
to be crucial in the context of quantifying the mixing efficiency of the flow. Whereas
identification of the extent to which the concentration field is homogenized requires
knowledge of the behaviour of both the outer interfaces and internal interfaces, the
total fraction of mixed fluid in the flow is determined entirely by the outer interfaces.
Denoting by αm the mixing efficiency, or fraction of mixed fluid, this may be written
as

αm =

∫ cmax

c1

p(c) dc, (4.1)
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Figure 9. Whole-field visualization of the outer-interfacial surface derived from the ∼ 10003

three-dimensional space–time x, y, t measurements, cf. figures 7 and 8. This is an opaque view with
time increasing vertically.

where the integration is carried out over mixed fluid only, i.e. excluding concentration
values that correspond to pure ambient fluid or pure jet fluid. By definition, 0 < αm 6 1
for miscible fluids. While the probability density function p(c) across the range of
concentration values corresponding to mixed fluid involves the dynamics of all mixed-
fluid interfaces, the mixing-efficiency integral in equation (4.1) is actually determined
solely by the behaviour of the outer interfaces. This can be appreciated by noting
that

αm =
Vouter

Vδ
, (4.2)

expressed here for constant-density flows, where Vouter is the volume of fluid enclosed
by the outer interfaces, cf. equations (3.1) and (4.1). It is the volume enclosed by the
outer interfaces, rather than the interfacial surface area, that determines the mixing
efficiency.

The dynamics of the outer interfaces, therefore, governs the mixing efficiency.
Figure 9 depicts a visualization of the space–time outer-interfacial surface. Large-
scale dynamical features are evident. Realizing that the mixing efficiency is sensitive to
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Figure 10. (a) xxxxEnsemble-averaged probability density pouter(r) of the radial location of the
outer interface from the flow centreline. (b) Ensemble-averaged probability Ppure(r) of pure ambient
fluid as a function of radial distance from the flow centreline.

the volume enclosed by the outer interface rather than the surface area, cf. equations
(4.1) and (4.2), it follows that it is the large-scale dynamics of the outer interface
that provide the dominant contribution to the mixing efficiency. While the small-
scale dynamics contributes greatly to the interfacial surface area (e.g. Catrakis et
al. 2002), the mixing efficiency is most sensitive to the large-scale dynamics of the
outer interface. Reduced variations in large-scale convolutions of the outer interface
will generally result in a higher mixing efficiency, as noted above in the context of
the mixing transition. Above the transition, such as for the present flow conditions,
knowledge of the radial location of the outer interface is useful for examining high-
Reynolds-number mixing-efficiency behaviour.

The ensemble-averaged probability density function pouter(r) of the radial location
of the outer interfaces from the flow centreline is shown in figure 10(a). This was
computed from the three-dimensional space–time outer interfaces and is normalized
such that ∫ δ/2

0

pouter(r) dr = 1, (4.3)

with δ/2 the maximum radial location of the outer interface from the flow centreline.
The probability density is seen to be precisely zero in the vicinity of the flow centreline,
i.e. near r = 0, reflecting the present observations that no pure ambient fluid is able to
enter and remain unmixed in that region of the flow, cf. figures 4(a, b), 6(a, b), 7 and
8. The largest probability density is found at a radial location 2 r/δ ∼ 0.6. The width
of the probability density function pouter(r) reflects, as expected, the unsteadiness of
the outer interfaces and of the large-scale flow boundaries. To investigate this further,
the fraction of pure fluid as a function of radial location should also be evaluated.
The present whole-field measurements of the outer interfaces enable the examination
of the variation of the fraction of pure fluid, relative to mixed fluid, in the flow.

The ensemble-averaged probability Ppure(r) of pure ambient fluid as a function of
radius is shown in figure 10(b). By definition, 0 6 Ppure(r) 6 1 at all radial locations.
The probability Ppure(r) is related directly to the mixing efficiency αm as

αm = 1−
∫ δ/2

0

Ppure(r) dr, (4.4)



402 H. J. Catrakis and others

cf. equation (4.1) and figure 10(b). For the present measurements, the mixing efficiency
is estimated to be αm ∼ 0.6 which also agrees with the behaviour of p(c), cf. figure 5(a)
and equations (3.2) and (4.1). Consistent with the result in figure 10(a), the probability
Ppure(r) is identically zero near the flow centreline reflecting the absence of pure
ambient fluid at those radial locations. In general, Ppure(r) 6= ∫ r

0
pouter(r

′) dr′, because
the probability density pouter(r) at a given radial location is sensitive to interfacial
behaviour at other radial locations, cf. equation (4.3), whereas the probability Ppure(r)
is not. Figures 10(a) and 10(b) further indicate that the unsteadiness of the outer
interfaces is primarily the result of the dynamics of the large-scale boundaries of
the flow. That the largest contributions to the mixing efficiency are from the large-
scale outer-interface dynamics is also indicated in figure 11(a, b) which visualizes the
relative extent of pure vs. mixed fluid.

5. Distribution of interfacial scales
In this section, the distribution of interfacial scales will be computed for the whole-

field three-dimensional space–time outer interfaces. The distribution of scales will be
defined in terms of generalized level-crossing spacings. The statistics of level-crossing
spacings have been examined in various flows in the past, following the pioneering
studies of Liepmann (1949), e.g. on the basis of point measurements (e.g. Sreenivasan,
Prabhu & Narasimha 1983) and two-dimensional measurements (e.g. Catrakis &
Bond 2000). Such statistics provide information about the behaviour of the interfaces
in physical space, as opposed for example to power spectra which are in Fourier
space. A generalization of level-crossing spacings to analogous spacing scales for
multi-dimensional interfaces has been developed (Catrakis 2000). This generalized
framework will be applied to the present measurements of the three-dimensional
space–time outer interfaces.

To compute the distribution of interfacial scales, box-counting techniques can be
employed. A bounding box of size δb is identified and successively partitioned into
smaller boxes each of size λ in order to count the number of boxes N3(λ) that cover
the interface. Such quantities are called coverage functions (e.g. Sreenivasan 1991;
Catrakis & Dimotakis 1996a). Care must be taken to avoid introducing artifacts of
pixelization, of noise, or of the extent of the image field of view which have been shown
previously to alter the apparent behaviour of the interfaces (e.g. Catrakis & Dimotakis
1996a , appendix). For this reason, the outer interfaces were represented in the present
study using the boundary-outline method (Catrakis & Dimotakis 1996a) extended to
three dimensions. For the present space–time x, y, t data, and for the purpose of inves-
tigating the distribution of interfacial scales, Taylor’s hypothesis was applied utilizing
the fact that the image framing rate in this study matched the mean speed of the outer
interfaces, as discussed in § 2. In examining multi-dimensional data, there is a possi-
bility of anisotropic behaviour. The coverage-function formalism has been extended
so that it can be applied to anisotropic interfaces or other objects (e.g. Catrakis 2000).
In general, it may be expected that there will be a distribution of directions associated
with each scale. The focus of the present study, however, is not on anisotropy but on
the scale distribution. The results below may be viewed in the context of averaging
the behaviour, at each scale, over the distribution of interfacial directions.

For three-dimensional interfaces, the distribution of scales can be computed from
the box-counting coverage fraction F3(λ) as

f3(λ) =
dF3(λ)

dλ
, where F3(λ) =

(
λ

δb

)3

N3(λ), (5.1)
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(a)

(b)

Figure 11. Visualizations of the relative extent of pure vs. mixed fluid in the flow, from the ∼ 10003

measurements, illustrating the role of the outer-interface dynamics in the context of the mixing
efficiency, cf. figure 10(b). All mixed fluid in the interior of the outer interfaces is labelled as blue,
cf. figure 3(a, b). (a) View normal to the time axis. (b) View along the time axis.
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and δb is the bounding-box size as noted above. The coverage fraction F3(λ) is the
normalization of the coverage function by the total number of available λ-boxes at
each stage of the bounding-box partitioning process. It is useful to view the coverage
fraction as the geometric probability that a randomly selected λ-sized region in the
flow, inside the bounding box, contains at least some part of the interface. The scale
distribution f3(λ) is the probability density of the size of the largest box, randomly
located within the bounding box, that does not contain any part of the interface. This
provides the generalization of the notion of level-crossing spacings familiar from the
study of one-dimensional signals, e.g. temperature or velocity-component traces. On
the basis of point measurements, the statistics of level-crossing spacings have been
examined in various fully developed turbulent flows (e.g. Sreenivasan et al. 1983) and
in particular for concentration-field level crossings at Taylor Reynolds numbers as
high as ReT ∼ 5000 in the atmospheric boundary layer (Yee et al. 1995). In addition
to the studies of level-crossing behaviour, there have been various investigations of
box-counting properties of interfaces (e.g. Sreenivasan & Meneveau 1986; Prasad
& Sreenivasan 1990; Lane-Serff 1993; Catrakis & Dimotakis 1996a; Frederiksen
et al. 1997). Box-counting properties can in fact be directly related to level-crossing
statistics as was shown by Catrakis (2000). In three dimensions, for example, there is a
one-to-one correspondence between the distribution of scales f3(λ) and the coverage
dimension D3(λ). The latter is defined as the fractional decrease of the coverage
function with increasing scale, i.e.

D3(λ) ≡ −dN3(λ)/N3(λ)

dλ/λ
≡ −d logN3(λ)

d log λ
. (5.2)

The coverage dimension is an important quantity because it provides a quantitative
measure of the dimensionality of the interfaces. Relative to the topological dimension
of the interfaces, the coverage dimension must be in the range

0 6 D3(λ)− 2 6 1 (5.3)

for the present interfaces which are surfaces in three dimensions. The relation between
the coverage dimension and the distribution of interfacial scales is

D3(λ) = 3− λf3(λ)∫ λ

0

f3(λ
′) dλ′

, (5.4)

as was derived for the general case by Catrakis (2000). This relation is invertible, i.e.

f3(λ) =
3− D3(λ)

λ
exp

{
−
∫ δb

λ

[3− D3(λ
′)]

dλ′

λ′

}
. (5.5)

Equations (5.4) and (5.5) constitute a transform pair in physical space that relates
the dimensionality of the interfaces as a function of scale, across the entire range of
scales, to the distribution of scales.

The ensemble-averaged coverage function, N3(λ), was computed by box counting
for the three-dimensional x, y, t outer interfaces and the coverage dimension was
determined using equation (5.2). Figure 12(a) shows the coverage dimension relative
to the topological dimension of the interfaces, cf. equation (5.3). The ensemble-
averaged bounding box size δb was employed to normalize the box scale as λ/δb.
The uncertainty in the coverage dimension was estimated to be ±0.02 based on
the fluctuations observed for the individual data sets. The continuous variation with
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Figure 12. Ensemble-averaged behaviour of the three-dimensional space–time outer fluid interfaces
throughout the range of scales. (a) Coverage dimension, D3(λ) − 2, relative to the topological
dimension of the interfaces as a function of scale (from figure 4d in Catrakis et al. 2002, shown here
for completeness); (b) distribution of interfacial scales, f3(λ). The scale distribution corresponds to
interfacial scales defined as generalized level-crossing spacings.

scale, evident in figure 12(a), indicates scale-dependent behaviour. Such behaviour
corresponds to cumulative interfacial properties as was recently demonstrated by
Catrakis et al. (2002). In interpreting the behaviour of the coverage function, and its
relation to the interfacial dynamics, it is useful to appreciate that the coverage function
N3(λ) essentially filters out interfacial information below the scale λ, i.e. the coverage
function is sensitive primarily to interfacial features of size greater than or equal to
λ. As a function of the scale λ, the coverage function is a cumulative quantity and
therefore sensitive to all interfacial features above that scale. The coverage dimension
is also a cumulative quantity because it integrates information across a range of
scales, cf. equation (5.5).

The behaviour of the coverage dimension in figure 12(a) illustrates, therefore, the
cumulative dynamics of the interfaces throughout the range of scales. The expected
bounding values are confirmed in the behaviour of the present data, cf. equation
(5.3). Away from the smallest scales, the coverage dimension is seen to depart from
the topological dimension, consistent with visual observations, e.g. the visualization
in figure 9. As the scale λ increases relative to the smallest scales, the coverage
dimension departs continuously from the topological dimension, indicating that the
interfaces become progressively more convoluted with increasing scale. This reflects
the increasing range of scales that influence the behaviour of the coverage function
and the coverage dimension. Figure 12(b) depicts the distribution f3(λ) of interfacial
scales for the present measurements. It is seen that f3(λ) decreases continuously with
increasing scale. The probability density of interfacial spacings is larger at the smaller
scales, reflecting the fact that there are more small-scale empty boxes, i.e. regions that
do not contain the interface. This behaviour is consistent with previous investigations
of interfaces derived from lower-dimensional measurements of interfaces (e.g. Catrakis
& Dimotakis 1996a, b).

The present results indicate that the scale-cumulative behaviour of the interfaces
across the range of scales can be scale dependent above the mixing transition. This
is not inconsistent with the classical self-similarity ideas of Richardson (1922) and
Taylor (1935), as may be appreciated by the following argument. The complexity
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of the dynamics of the interfaces, at a given scale, is primarily influenced by flow
structures at or below that scale. Examination of the interface at increasing scales can
be expected therefore to show progressively more convoluted behaviour, because of
the larger range of scales subtended. Examination of interfacial self-similarity requires
scale-local measures that can quantify the interfacial behaviour as a function of scale.
Such scale-local measures were recently introduced in the context of area–volume
properties of interfaces and indicate the presence of self-similarity in the scale-local
behaviour coexisting with scale dependence in the cumulative properties that arises
from large-scale effects (Catrakis et al. 2002). As discussed in § 4, while it is the
interfacial behaviour across the entire range of scales that determines the mixing
efficiency, the dominant contribution is from the large-scale features of the outer
interfaces.

6. Conclusions
The experiments conducted in this study have provided ∼ 10003 whole-field three-

dimensional space–time measurements above the mixing transition, at a Reynolds
number of Re ∼ 20 000 and Schmidt number of Sc ∼ 2000 in turbulent jets at a
far-field distance of z/d ∼ 500 nozzle diameters. These measurements have resolved
the entire range of scales of the outer interfaces in fully developed turbulence in three
out of the four space–time dimensions. The outer interfaces are the interfaces between
mixed fluid and pure ambient fluid and are physically important for understanding
turbulent mixing. The present measurements have enabled a direct examination of the
large-scale behaviour of the outer interfaces including both the temporal dynamics and
spatial structure. Investigations of the whole-field mixing behaviour and dynamics of
the outer interfaces above the mixing transition are particularly important because the
properties of the fluid interfaces in such flows can be expected to be representative, at
least qualitatively, of the mixing behaviour in high-Reynolds-number flows in general.

The principal finding in this work is that the outer interfaces above the mix-
ing transition are dynamically confined primarily near the instantaneous large-scale
boundaries of the flow. Molecular mixing of pure ambient fluid is initiated in the
vicinity of the unsteady large scales. These observations are quantified in terms of
the probability density of the location of the outer interfaces relative to the flow
centreline and the probability of pure ambient fluid as a function of distance from
the centreline. The present findings show that the turbulent mixing behaviour above
the mixing transition is qualitatively different from the known behaviour below the
transition where pure ambient fluid can penetrate deeply into the interior of the flow
as unmixed fluid. The direct examination of the whole-field dynamics of the outer
interfaces, demonstrated in the present experiments, makes it possible to identify the
mechanism by which mixing of pure ambient fluid is initiated in the flow. The present
observation that the outer interfaces are dynamically found near the instantaneous
large-scale boundaries of the flow can be explained by considerations of large-scale
entrainment, above the mixing transition, whereby the large-scale flow dynamics
coupled with the emergence of small-scale structures internal to the large structures
initiate mixing near the unsteady large scales. Because large-scale dynamics is preva-
lent in turbulent shear flows (e.g. Roshko 1992), this turbulent mixing mechanism
may be expected, at least qualitatively, in other flows at high Reynolds numbers, i.e.
above the mixing transition, with the large-scale behaviour of the outer interfaces
governed by the large-scale vortex dynamics.

Visualizations of the whole-field mixing behaviour from the present measurements
show multiple large-scale regions of spatially nearly uniform-concentration fluid, i.e.
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well-mixed fluid, in agreement with previous results above the mixing transition.
A linear behaviour is found for the ensemble-averaged probability density function
of concentration over a wide range of concentration values in the interior of this
flow. This finding can be accounted for in terms of the dynamics of large-scale
well-mixed regions. The linear dependence in the concentration probability density
function corresponds to mixing behaviour above the mixing transition. This provides a
quantitative means to extrapolate the ensemble-averaged mixing behaviour to higher
Reynolds numbers.

The dynamics and structure of the outer interfaces determine the mixing efficiency
of the flow, i.e. fraction of mixed fluid. The behaviour of the outer interfaces across
the entire range of scales can be quantified in terms of the distribution of interfacial
scales. While the dynamics and structure of the outer interfaces across the whole range
of scales determine the mixing efficiency, it is the large-scale dynamics of the outer
interfaces that provides the dominant contribution. This suggests a new approach for
developing predictive descriptions of the mixing efficiency in high-Reynolds-number
turbulent flows.
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